skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wylie, Zachery R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Autonomous experimentation–or self-driving labs–offers a systematic approach to accelerate materials discovery by integrating automated synthesis, characterization, and data-driven decision-making. We present a closed-loop workflow for the on-demand synthesis and structural characterization of colloidal gold nanoparticles, enabling direct mapping from composition to nanoscale structure. Our framework leverages differentiable models of spectral shape to address two central tasks in self-driving labs: (a) phase mapping, or identifying compositional regions with distinct structural behavior; and (b) material retrosynthesis, or optimizing compositions for target structure. Using functional data analysis, we develop a data-driven model with generative pre-training, active learning, and high-throughput experiments to predict spectral responses across composition space. We demonstrate the approach on seed-mediated growth of gold nanoparticles, showcasing its ability to extract design rules, reveal secondary interactions, and efficiently navigate morphology space. Gradient-based optimization of the models enables inverse design, making this a unified platform. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. An open-hardware automated workflow for mesoporous colloidal silica synthesis is developed and applied to study a compositional parameter space. 
    more » « less
  3. The synthesis and ligand-mediated assembly of ultrasmall antimony(iii) sulfide nanoparticles is reported. These Sb2S3nanoparticles exhibit fast electrochemical cycling and long lifetimes for lithium and sodium ion systems. 
    more » « less